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PREFACE 

This report   covers  research  sponsored by the  National  Aeronautics 
and  Space  Administration,  Langley  Research  Center,  under  Contract No. NAS1- 
4900. Mr. D. R.  Kobet t ,   project   leader ,  was responsible for overa l l  program 
di rec t ion .  Mr. D. I. Sommerville  carried  out  the  requisite  ntodifications  and 
improvements of t h e  computer  program. 
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A f l u t t e r  ana lys i s  i s  conducted  of  simply  supported flat panel 
a r rays  made up of one spanwise  bay  and  one, two and  three streamwise bays. 
The a r rays  are of f i n i t e  span in   contrast   wi th   previous  analyses  which treat 
either  the  two-dimensional  case or the   case   o f   in f in i te   span   d iv ided   in to  
equal  bays. Use is  made of l inear  plate  theory  and  complete,   l inearized, 
three-dimensional,  inviscid  aerodynamic  theory. The e f f e c t s  of s t r u c t u r a l  
damping and  aerodynamic  and s t ruc tura l   coupl ing   a re   inc luded .   Solu t ions   to  
t he   f l u t t e r   equa t ions  are obtained  using  the  Galerkin  technique. 

Cr i t i ca l   f l u t t e r   boundar i e s  are computed for   panels   of   aspect   ra t io  
2 and 4, m c h  number 1.35, and   s t ruc tura l  damping c o e f f i c i e n t   e q u a l   t o  0.01. 
The th ickness   requi red   to   p revent   f lu t te r  i s  shown to   increase   wi th   increas ing  
number of streamwise bays. The e f f e c t  of increasing  the number of bays from 
one t o  two i s  considerably  larger   than  the  effect  of  adding a t h i r d   p a n e l   t o  
a two bay ar ray .  The e f f e c t  i s  a l so   l a rge r   fo r   t he   l a rge r   a spec t   r a t io .  

The f l u t t e r  mode shapes  of  the  multiple  bay  arrays  are  dominated by 
s t r u c t u r a l l y  uncoupled modes. It i s  concluded t h a t  aerodynamic  coupling i s  
the  primary mechanism of des tab i l iza t ion .  
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I. INTRODUCTION 

P a n e l   f l u t t e r  i s  defined as t h e   o s c i l l a t o r y   i n s t a b i l i t y   i n d u c e d   i n  
a t h i n   p a n e l   i n   a n  airstream by in t e rac t ion  between the  airstream and  panel 
motion. The  phenomenon i s  o f   i n t e r e s t   t o  missile and a i r c ra f t   des igne r s  where 
the   vehic le   sk in  i s  made up  of   thin  panel   arrays whose sus ta ined   osc i l la t ion  
would  be objec t ionable .   Extens ive   theore t ica l   and   exper imenta l   e f for t   has  
therefore   been  invested  in  attewts t o   c l a r i f y   t h e   f l u t t e r  phenomenon and, i n  
par t icu lar ,   to   deve lop  a rnethod(s)  for  predicting i t s  occurrence.  Although 
t h e s e   e f f o r t s  have m e t  with some success, rnany relevant   quest ions  remain  to  be 
answered. The present   report  i s  concerned  with  one  of  these  questions, namely, 
t h e   e f f e c t  of  multiple strearnwise bays on t h e   f l u t t e r   c h a r a c t e r i s t i c s  of  an 
a r ray  of f l a t  p a n e l s   i n   t h e  low supersonic Mach number regime. 

Early  invest igators   concentrated on the   ana lys i s  of panel   arrays 
with one  bay i n   t h e   s t r e a m i s e   d i r e c t i o n .  However, panels   ordinar i ly   occur  
in   a r r ays   w i th   mu l t ip l e  streamwise bays; so  t h e  later configuration soon came 
under  study.  Panel  arrays  with  multiple strearrtwise bays  have  been inves t i -  
gated by  Rodden[2]*, Dowell[3J,  Zeydel p,5] and Lock[6]. References  2,3,4  and 
6 are analyses  of  two-dintensional  arrays ( i .e . ,  a r rays  composed o f   i n f i n i t e  
aspect   ra t io   panels) ,   whi le   the  case of an  array  of   inf ini te   span  separated 
in to   un i form  f in i te   bays  i s  treated i n  [5]. A l l  of the   ana lyses   use   l inear  
p l a t e   t heo ry   t o   desc r ibe   t he   s t ruc tu re  and a l l  but  [3] use  exact   l inear ized 
aerodynamic theory  for  the  pressure  formulation ( R e f .  3 uses   the  pis ton  theory 
approximation). 

Rodden[2] and Dowel1 [3] both showed t h a t   t h e  number of  strearwise 
bays  has l i t t l e  e f f e c t  on the  f lut ter   of   pinned  edge  panels   for  Mach number 
grea te r   than  1.56. I n  [4] Zeydel  used  the  Galerkin  technique  to compute 
f lut ter   boundaries   (condi t ions a t  the   onse t  of f l u t t e r )   f o r  two-dimensional 
pinned  edge  panel  arrays a t  lower Mach numbers. He found  increasing  the 
number of streamwise bays t o  have a pronounced d e s t a b i l i z i n g   e f f e c t  ( i .e. ,  
causes   f l u t t e r   t o   occu r   fo r  a wider range  of  conditions). The ana lys i s  
excluded  the  effects   of   s t ructural   coupl ing  and  s t ructural  damping. Lock[6] 
included  s t ructural   coupl ing  and  s t ructural  damping i n   h i s   a n a l y s i s  and com- 
puted   f lu t te r   boundar ies   for  one  and two bay  clamped  edge a r rays  and two bay 
pinned  edge  arrays  throughout  the Mach number range 1.2 t o  2.0. He found t h a t  
t h e   f l u t t e r  of  clamped  edge a r r ays  was i n s e n s i t i v e   t o   t h e  number of stream- 
wise bays while h i s   r e s u l t s  for the  pinned  edge arrays agreed  with  Zeydel's 
i n   i n d i c a t i n g  a pronounced e f f e c t  a t  the  lower Mach numbers. 

* 
Numbers i n   b r a c k e t s   r e f e r   t o   t h e   r e f e r e n c e s .  
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I n  c5-J Zeydel   extended  his   previous  analysis   to   include  panel   arrays 
with : 

(a) Inf in i te   span   d iv ided   in to  f i n i t e  bays, 

(b)  Edge conditions  varying  between  pinned  and clamped, and 

( c )  One and two streamwise  bays. 

Structural   coupl ing  and  s t ructural  damping were included  and  f lut ter  bound- 
aries were computed fo r   Mch  number 1.35 and  aspect   ra t ios  of 4 a n d i n f i n i t y .  
H i s  i n f i n i t e   a s p e c t   r a t i o   r e s u l t s ,   i n t e r p r e t e d  i n  terms of aluminum panels a t  
sea l eve l ,  show the  f l u t t e r  of clamped edge p a n e l s   t o  be i n s e n s i t i v e   t o   t h e  
number of streamwise bays, i n  agreement  with Lock; the  pinned  edge  panels show 
a pronounced s e n s i t i v i t y   i n  agreement  with  his  (Zeydel 's)   previous  results.  
The pane ls  of a s p e c t   r a t i o  4 were found t o  have f l u t t e r   c h a r a c t e r i s t i c s   v e r y  
similar to   those  of  .the i n f i n i t e   a s p e c t   r a t i o   p a n e l s .  

The purpose  of  the  present  analysis i s  to   ga in   fu r the r   i n s igh t   i n to  
the   p rac t ica l   aspec ts  of p a n e l   f l u t t e r  by inves t iga t ing   a r rays   o f  f i n i t e  span 
and  moderate  aspect  ratio where three-dimensionality i s  emphasized. F in i t e  
p a n e l  arrays  with one spanwise  bay  and  one, two and  three  streamwise  bays  are 
analyzed.  Exact  linearized  aerodynamic  theory  and a Galerkin  approach are 
used  and  the  effects of s t ructural   coupl ing  and  s t ructural  damping are in-  
cluded.  Flutter  boundaries are computed for simply  supported  arrays a t  Mach 
number 1.35 for panel   aspect   ra t ios   of  2 and 4. 

The analyt ical   technique i s  d e s c r i b e d   i n   d e t a i l   i n  111 and  therefore 
only   b r ie f ly   d i scussed   here   in  part 11. The numerical  procedure i s  described 
i n  p a r t  I11 and t h e   r e s u l t s  are presented  and  discussed  in part I V .  

11. ANALYSIS 

The physical   systems  to  be analyzed  consist  of f i n i t e   a r m y s  of 
similar f l a t   p a n e l s  exposed on one s i d e   t o  a uniform  supersonic stream of 
Mach number M (see Fig. 1) .* The panel  edges are free t o   r o t a t e   b u t  re- 
s t ra ined   aga ins t   t ransverse   def lec t ion .  To make the  aerodynamics  tractable 
it is  assumed t h a t   t h e   a r r a y  i s  bordered  by  an  infinite impermeable surface 
extending  upstream  and  that  acoustic  pressures on t h e  underside of t he   a r r ay  
are neglected.   Analysis   detai ls  are completely  described  in [a and are 
therefore   on ly   b r ie f ly   ou t l ined   here .  

The dynamic equation  of  motion  for  the  transverse  deflection, w , 
i s  obtained  using  l inear   plate   theory  and  exact ,   l inear ized aerodynamic  theory. 

8 
All tab le s  and f igures   appear   in   the Appendix. 
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The de f l ec t ion  i s  then  approximated by 

where w = osci l la t ion  f requency 

t = time 

~ ~ ( x )  = natura l   v ibra t ion  mode shape  of a multi-bay beam sa t i s fy ing   the  
boundary  conditions  on  the  spanwise  edges of the   pane l   a r ray  
( A  refers t o  mode number) 

Jln(y) = natura l   v ibra t ion  mode shape  of a multi-bay beam sa t i s fy ing   t he  
boundary conditions on t h e  streamwise edges  of  the  panel 
a r r a y   ( n   r e f e r s   t o  mode number) 

qR,-, = weight ing  coeff ic ients  

Observe t h a t   t h e  streamwise (x) deflection  shape i s  approximated by a 
surmnation of functions @,(x) and the  spanwise (y)  deflection  shape by the  
s ingle   funct ion $,(y) . Previous  experience  has shown tha t   the   s ing le   func-  
tion  representation  for  the  spanwise  shape is  sat isfactory  for   the  determina-  
t ion   o f   s tab i l i ty   boundar ies .  

An approximate  solution i s  sought  using  the  Galerkin  technique. 
The procedure  leads  to a set of  equations 

where %T,a and are arrays  which  depend  only on the  number  of stream- 
wise and  chordwise  panels  and  the  boundary  conditions on the  panel  edges. 

4 



k = reduced  frequencp = wa/U 

z = dynartcc pressure - stiffness  paranleter = $~/~(l-V2) 

The term  p(x,y)  i s  the   p ressure  on the   def lec ted   pane ls  which i s  
t o  be  obtained  from  exact,   l inearized,  three-dimensional,   inviscid  aerody- 
namic theory. A completely  general   solution i s  not   ava i lab le   for   p (x ,y)  
and use i s  therefore  made of a r e s u l t  from E71 which glves   the  per turbat ion 
pressure  pu,nl on a s u r f a c e   i n  harmonic  motion with  arbitrary  chordwise 
def lec t ion  am( x) , and s inusoidal   spanwise  def lect ion  s in  uT$/B . The t o t a l  
per turbat ion  pressure on the   sur face  i s  obtained  from a superposition  of 
pu,m terms by expanding  the  spanwise  deflection  shape  in a s ine  series, 

The expansion (3) gives $n flanked by per iodic   re f lec t ions .  By properly 
choosing  the  wavelength B the   r e f l ec t ions   can  be uncoupled  aerodynamically, 
t hus   ach iev ing   t he   e f f ec t   o f   an   i so l a t ed   f i n i t e   pane l   a r r ay .*  

The approach  described above u l t ima te ly   y i e lds  a formulat ion  for   the 
t ransverse  def lect ion w express ib le   in   mat r ix  form a s  

I n  (4),  I i s  the   i den t i ty   ma t r ix  and QnL i s  the  "f lut ter"   vector   with 
elements  equal t o   t h e  q of  equation (1). The matrices C- and D-,,,,, 
are f 'unctions  of: 

J,n m,m 

Number of  chordwise  and  spanwise  panels 

Panel  boundary  conditions 

Mach number 

Aspect r a t i o  

Reduced frequency, k . 
* See  nomenclature l i s t  f o r  detailed def in i t ion   o f   no ta t ion .  

** For a de ta i led   d i scuss ion  see [l] pages 10 and 60. 

5 



Solut ions  to   the  e igenvalue  equat ion (4) represent   po in ts   o f   neut ra l   s tab i l -  
i t y ,  i .e . ,  conditions  under whTch the   pane l s   o sc i l l a t e  harrrtonically  under  the 
inf luence   o f   the  a i r  stream. Loci  of  these  points of n e u t r a l   s t a b i l i t y  
def ine  the  f lut ter   boundaries   which are the   ob jec t ive  of the   p resent   ana lys i s .  

The techniques  of  the  numerical  computation  of  the  flutter bound- 
aries are descr ibed   in   the   next   sec t ion .  

111. NUMERICAL PROCEDURE 

Flutter  boundaries  are  obtained by the  following  procedure. The 
genera l   phys ica l   s i tua t ion  i s  defined f irst  by specifying  the  following: 

(1) Nurtber of spanwise  panels* 

(2)  Number of  chordwise  panels 

( 3 )  Panel  boundary  conditions* 

( 4 )  Mach  numbel-n 

(5)  Aspec t   ra t io  

( 6 )  Magnitude  of s t ruc tura l   dampine  

Equation ( 4 )  can  then be expressed  funct ional ly   as  

where P E , ~  i s  a known corrlplex a r ray  and  RE,^ i s  a complex array  depending 
only on reduced  frequency k . The c r i t e r i o n   f o r  a non t r iv i a l   so lu t ion  of 
(5) i s  

* A fixed  value i s  assigned  to  this i tem  in   the   p resent   ana lys i s .  The 
computer  program  can accommodate a range of va lues   wi th in   the   res t r ic -  
t i ons   de f ined   i n  [l.. . 

6 



A special   a lgori thm [1J is used   t o  compute t h e   p a i r s  of real  p and Z and 
the  corresponding  vectors Qm which s a t i s f y  ( 6 )  for   successively  selected 
values  of re uced  frequency k . These pa i r s   o f   va lues   a r e   t hen   p lo t t ed   i n  
the  l/p - 2'7' plane.*  Distinct  continuous  stabil i ty  boundaries  are con- 
s t ruc t ed  by connect ing  the  plot ted  points  on the  basis   of   cont inui ty  of 
reduced  frequency  and modal content of the  vector  Qnt .- Mul t ip l e   s t ab i l i t y  
boundaries  are  thereby  obtained for each  physical   s i tuat ion  analyzed  (Figs .  
3-8) - 

Each boundary  determined i n   t h e  above manner corresponds t o  a locus 
of  points of n e u t r a l   s t a b i l i t y ,   t a c i t l y  assumed to   d iv ide   reg ions  of f l u t t e r  
(unstable)  from  regions  of no f lu t te r   ( s tab le) .   For   the   c losed   boundar ies  
such as  the  second mode loop i n   F i g .  3, the  unstable   region i s  in s ide   t he  
loop. For t he  open boundaries  the  unstable  region i s  t o   t h e  lef t .  

A given  combination  of  material  and  altitude  defines a hyperbola i n  
the  generalized  parameter  plane  because 

The in t e r sec t ion  of the  hyperbola  with a s t a b i l i t y  boundary i d e n t i f i e s   t h e  
ndnimum panel  thickness***  required t o   p r e v e n t   f l u t t e r   i n   t h e  mode character-  
i zed  by the  associated Qm . The r ight-most   intersect ion i s  c r i t i c a l   s i n c e  
it determines  the minimurn thickness   required  to   completely  suppress   f lut ter .  

In   car ry ing   ou t   the  above procedure  for   determining  s tabi l i ty  
boundaries it i s  a l so  necessary  to  specify  the  following: 

Spanwi se mode $n 

Range of the  parameter l/p 

Number of terms in  the  expansion  of  '#n (Eq. ( 3 ) )  

Chordwise modes Qm 

Reduced frequency k 

* The conventional 1/p - Z1/3 plane i s  se lec ted   for   d i sp lay ing   the  
boundaries i n   p r e f e r e n c e   t o   t h e   o p t i o n a l  p - Z plane. 

r r m m  element t o   f a c i l i t a t e   a n a l y s i s  of the  modal content.  

denote  the  nondimensional  ratio  of  panel  thickness  to  chord.  

-x+ The computer  program  provides i n   p o l a r  form  normalized on the  maxi- 

WC-X The term "thickness" i s  consistently  used  throughout this r e p o r t   t o  
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Permanent values were a s s i g n e d   t o   t h e  first th ree  items as follows. The 
fundamental beam vibra t ion  mode (TT frequency) was selected  for   the  spanwise 
mode, Jln , on the  basis  of  previous  experience.   Solutions  of (6) were ob- 
tained  throughout  the  range 0 -002 % l/w < 0.5 t o   i n s u r e  complete  definit ion 
of  boundaries i n   t he   r ange   o f   phys i ca l   i n t e re s t  0.01 S 1/11 I 0.2. Twenty  non- 
zero  terms were used in  the  expansion  of \C'n (Eq. ( 3 ) )  after i n i t i a l  compar- 
ative  computations showed a var ia t ion   o f  less than 0.1 p e r   c e n t   i n  computed 
resu l t s   us ing  15 and 20 terms.* (The number of terms used  has  negligible 
e f f e c t  on computation time.) 

Convergence  of the   vec tor  Qm i s  t h e   c r i t e r i o n  used fo r   s e l ec t ion  
of  the  chordwise modes, QIm , t o  be  used i n   t h e   a n a l y s i s .  The  modes were 
s e l e c t e d   t o   i n s u r e   i n f a l l i b l e   i d e n t i f i c a t i o n  of t he   c r i t i ca l   enve lope  of 
boundaries  and  definit ion of the   envelope   loca t ion   to  a prec is ion  commensurate 
with  the  precision  of  the  input  parameters.  

Reduced frequencies were selected  by  observing  the development  of 
t he   s t ab i l i t y   boundar i e s  as the  computat ions  progressed.   Typical ly ,   in i t ia l  
computations were made f o r  a set  of  frequencies  ranging  from  about 0.2 t o  2.0 
in   s teps   o f  0 .4 .  These  computations  yielded  points on the  boundaries which 
guided  the  selection  of  frequencies  for  subsequent  calculations.  By repeat-  
ing  the  above loop the  boundaries were gradually  defined  throughout  the  range 
of i n t e r e s t  of the  parameter l/w . 

I V .  NUMERICAL RESULTS 

Stab i l i ty   boundar ies  were  computed for  arrays  of  simply  supported 
pane l s   fo r   mch  number 1.35 and a s t r u c t u r a l  damping coe f f i c i en t  of 0.01. 
Six  configurations were analyzed, namely, arrays  with one, two and th ree  
chordwise  bays,   each  with  alternate  panel  aspect  ratios  of 2 and 4. The 
s tab i l i ty   boundar ies  are shown i n  figs. 3 t o  8** and   the   c r i t i ca l   ( r igh t -most )  
envelopes  for  the two aspec t   r a t io s  are superimposed in   F igs .  9 and 10 t o  
i l l u s t r a t e   t h e   e f f e c t  of t h e  number of  chordwise  bays. The broken l i n e  curve 
i n  t he  lat ter two f igures  i s  the  hyperbola  defined  by aluminum panels a t  sea 
l eve l   f l i gh t   cond i t ions .  

* Recall   that   the  spanwise  deflection  shape, Jln , is expanded i n  a s i n e  
series (Eq.  ( 3 ) ) .  The expansion i n   e f f e c t   y i e l d s   a n  odd periodic  func- 
t ion  with  $n as one-half  cycle  aerodynamically  isolated from i ts  a n t i -  
symmetric r e f l ec t ions .  For a detai led  discussion  see [l] pp. 10 and 60. 

Where some of  the  boundaries  appear t o  be extrapolated i n  the   increas ing  
1/p di rec t ion ,  computed poin ts  are a v a i l a b l e   o u t s i d e   t h e   p l o t   s c a l e   t o  
guide  construction  of  the  boundary.  Boundaries shown  by broken  l ines 
were not  computed i n  de t a i l  because  they are obviously  subcri t ical .  
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Before  discussing  the  individual  boundaries it i s  useful t o   p o i n t  
ou t  some  common features not  conveniently shown i n  t h e  figures. Each  boundary 
i s  i d e n t i f i a b l e   w i t h . a   p a r t i c u l a r  mode corresponding t o   t h e  maxim element 
i n   t h e   f l u t t e r   v e c t o r  Qm *. Coupling  between modes varies along  any  given 
boundary but  the  dominant mode i s  the  same throughout. Weakest coupling 
between modes o c c m s   t o   t h e   r i g h t   i n   t h e   f i g u r e s ,  this be ing   par t icu lar ly  
not iceable   in   the   c losed   loops   typ i f ied  by t h e  second mode contours i n  Figs. 
3 and 4. The l a t t e r   f e a t u r e  i s  beneficial  because it means t h a t   d e f i n i t i o n  
of the   c r i t i ca l   ( r igh t -most )   enve lope  can be  accomplished  using a moderate 
number of  chordwise modes. - 

Computational details   are  discussed  next  followed by examination of 
t h e   e f f e c t s   o f   a s p e c t   r a t i o  and number of  chordwise modes. 

A.  Computational Details 

Figures 3 and 4 i l l u s t r a t e   t h e   s t a b i l i t y   b o u n d a r i e s   f o r   t h e   p a n e l  
arrays  with one  chordwise  bay.  These  boundaries were obtained  using  the f i rs t  
four   na tura l  beam  modes f o r  4, . Satisfactory  convergence  of  the  boundaries 
was ve r i f i ed  by o b t a i n i n g   a t   l e a s t  one point  on each  boundary i n  a s i x  mode 
computation. The adequacy  of  four mode analyses i s  also  implied by t h e   f a c t  
t ha t   t he   c r i t i ca l   enve lope  i s  made up  of  those  portions of t he  first and 
second mode boundaries where coupl ing  with  the  fourth mode i s  negl igible .  
(See  Table I1 where t h e  modulus of   the  fourth mode element i s  shown t o  be l e s s  
than 0.5 per  cent of t he  m a x i r m u n .  ) Four  boundaries were obtained,  associated 
with  the  four  chordwise modes 0, . 

Stabi l i ty   boundaries  f o r  the  arrays  with two chordwise  panels are 
shown i n  Figs. 5 and 6. The f irst  and t h i r d  mode boundaries were obtained 
i n i t i a l l y   u s i n g   t h e  f irst  four  chordwise modes; the  boundaries shown were 
then  obtained  using modes one to   s ix .   Addi t ion  of   the two higher modes had 
impercept ible   effect  on the   loca t ion  of the  boundaries  (although  reduced 
f requencies   increased   s l igh t ly) .  The f i f t h  mode boundary was obtained  using 
modes three through  eight.  I t s  locat ion was ver i f ied  in   computat ions  using 
modes one through s ix  and three through  six  wherein  points were obtained  that  
are indis t inguishable  frorn the   p lo t t ed  boundary when superimposed  on t h e  
f igures .  The s i x t h  mode boundary,  obtained  using modes one t o   s i x  and three 
t o   e i g h t ,  i s  no t   de f ined   i n   a s   mch   de t a i l   a s   t he   o the r s   because  it is  obvi- 
ous ly   subcr i t ica l .  It i s  noteworthy t h a t  second  and fou r th  mode boundaries 
were not  identified  even  though a wide  range  of  frequencies w a s  invest igated.  

* A few boundaries are denoted  as  coupled mode boundaries   indicat ing  that  
two o r  more elements are much l a rger   than   the  rest. The l a r g e s t  i s  
named first. 
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These  boundaries may ' e i t he r   ex i s t   ou t s ide   t he  1/p range of i n t e r e s t  or be  con- 
f i n e d   t o  a r e g i o n   i n   t h e   f l u t t e r  parameter plane  too small t o  be detected  by 
the  numerical  procedure. It is  reasonable t o  conclude,  however, t h a t   t h e  
second  and  fourth m o d e  boundaries are unimportant on the  basis t h a t   t h e y  are 
s t ruc tura l ly   coupled  modes and  Figs. 5 and 6 indicate  the  uncoupled modes t o  
be most c r i t i c a l .  The relat ive  importance  of   the  s t ructural ly   uncoupled 
modes i s  more c l ea r ly   i l l u s t r a t ed   i n   t he   fo l lowing   ca se  of panel   arrays  with 
three  chordwise  bays. 

S tab i l i ty   boundar ies  for  panel  arrays  with  three  chordwise bays are 
shown in   F igs .  7 and 8 where i t  can be seen that t h e   s t r u c t u r a l l y  uncoupled 
modes one,  four  and  seven are most c r i t i c a l .  The first and  fourth mode bound- 
a r i e s  were obtained  using natural modes one t o   s i x  and  the  seventh mode bound- 
a ry   us ing  modes four   to   nine.   Analyses   using  s ix   consecut ive modes are suf- 
ficient  because  strongest  coupling  occurs  with  the  adjacent modes and  the 
coupl ing   fa l l s   o f f   rap id ly  away from t h e  dominant mode. There i s ,  for example, 
no appreciable  coupling between modes one,  four  and  seven on t h e   c r i t i c a l  
sides  of  any  of  the  three  boundaries.  The coupling i s  s t ronger  on the  por- 
t i o n s   t o   t h e  l e f t ,  as noted earlier, b u t   t h i s  i s  not   impor tan t   to   ident i f i -  
ca t ion   of   the   c r i t i ca l   enve lope .  The remaining  boundaries shown i n   F i g s .  7 
and 8 were obtained  using  the f i rs t  s i x  chordwise modes.  Convergence was not 
invest igated  in   detai l   because  these  boundaries   are   c lear ly   subcri t ical .   In  
the  course of computation some poin ts  were obtained  which  indicate  the  pres- 
ence  of  higher mode boundaries.   These  points  (not  plotted) a l l  f a l l   t o   t h e  
l e f t  of  the  boundaries shown. 

The cr i t i ca l   enve lopes   o f   the   s tab i l i ty   boundar ies  are r epea ted   i n  
superposit ion  in  Figs.   9  and 10 t o   i l l u s t r a t e   t h e   e f f e c t   o f   t h e  number of 
streamwise  bays. The broken l i ne   cu rve   i n   t he   f i gu res  i s  the  hyperbola  corre- 
sponding t o  aluminum panels a t  sea l eve l   f l i gh t   cond i t ions  (Eq. ( 7 ) ) .  The 
fol lowing  mater ia l   and  a l t i tude  propert ies  were used to   def ine   the   hyperbola .  

E = 10.5 x lo6 p s i  = 7.239 x lo1' Newtons/meter2 

v = 0.318 

C, = 13440 in/sec = 341  meters/sec 

p = 1.1468 x lb-sec2/in4 = 1.2256  kilograms/meter3 

p s  = 2.59  x  lb-sec2/in4 = 2.7679 x lo3 kilograms/meter3 

Minimum th icknesses   requi red   to   p revent   f lu t te r   o f  aluminum panels 
a t  sea level ,   obtained from the   i n t e r sec t ions  of the  hyperbola   with  the  cr i t -  
ical   envelopes,   are   given  in   Table  I. The corresponding  f lut ter   vectors   are  
given  in   Table  11; a prec ise   def in i t ion   o f   the   t abula ted   quant i t ies  i s  given 
in  the  following  paragraph. 
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The deflection  shape a t  f l u t t e r  of a panel 
bays,  each  of  length a and  width b , i s  given by 

array  with L streamwise 

F(x,y, t )  = eiwtsin(rry/b) x q eiej.#j(x)} 
/ j  j 

where  x i s  the  streamwise  coordinate, y the  spanwise  coordinate,  and  iej(x) 
the  jth na tura l   v ibra t ion  mode shape of a continuous , simply  supported beam 
with L equal bays.* The quant i t ies   given  in   Table  I1 are the  q and e j  
of  the  above  formulation. For the  present   analysis   the ipj(x) are normalized 
on the  basis of unit rms amplitude, i . e . ,  each  Qj(x)  i s  mult ipl ied by a s u i t -  
ab le   cons tan t   to   sa t i s fy   the   condi t ion  

J 

The above  choice for  normalization  yields  almost  the same r e s u l t s   f o r  q j  i n  
Table I1 as normalization on the  basis   of   uni t  maximum amplitudes.* 

The numerical   results w i l l  now be discussed  and compared with  the 
results obtained by o ther   inves t iga tors .  

B. Effect  of Number of Streamwise Bays 
= __ 

The numerical   resul ts  show tha t   increas ing   the  number of streamwise 
bays i n  a n  array  of  simply  supported f la t  panels  has a pronounced destabi-  
l i z i n g   e f f e c t ,  i . e . ,  the   a r ray  becomes much more s u s c e p t i b l e   t o   f l u t t e r .  The 
c r i t i ca l   enve lopes   in   F igs .  9 and 10 show th is   e f fec t   to   ex tend   th roughout   the  
en t i re   p rac t ica l   range   of   the  mass ratio  parameter l/y . The f igures   fur ther  
show tha t   t he   des t ab i l i z ing   e f f ec t  i s  

(a) Larger for t he   l a rge r   a spec t   r a t io ,  and 

(b)   Proport ionately  greater  when the number of streamwise bays i s  
increased from one t o  two than when a th i rd   pane l  i s  added t o  a two bay array.  

* For formulation  of  the rP j(x) see  for  example Ref. 1. Normalized mode 

++ If normalization on the   bas i s   o f  unit maximum amplitude i s  employed, the 
w i l l  be i d e n t i c a l   f o r   t h e  one bay arrays;   the   s t ructural ly   coupled 

shapes  are shown i n  Fig. 2. 

q j  
mode components will increase by a factor   of  1.04 fo r   t he  two bay ar rays  
and 1.2 - 1.4 fo r   t he   t h ree  bay ar rays .  The phase  angle e j  i s  
unaffected. 
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Table I i l l u s t r a t e s   t h e  above e f f ec t   quan t i t a t ive ly   fo r   t he   ca se   o f  aluminum 
panels a t  sea l eve l - f l i gh t   cond i t ions .  It is  s e e n   i n   t h e   t a b l e  that fo r  
panels  of  aspect  ratio  4,   adding a second streamwise bay  almost  doubles  the 
th ickness   requi red   to   p revent   f lu t te r .  Adding a th i rd   pane l   i nc reases   t he  
thickness  requirement t o  2.2 times that n e c e s s a r y   t o   p r e v e n t   f l u t t e r  of t h e  
s ingle   panel .  For panels   o f   aspec t   ra t io  2 the  corresponding  thickness  ratios 
are 1.44  and 1.51. 

A second  general   resul t  i s  that the   c r i t i ca l   enve lope   of   boundar ies  
for   the   mul t i -bay   a r rays  i s  dominated by t h e   s t r u c t u r a l l y  uncoupled na tu ra l  
streamwise modes.* S ince   th i s   impl ies   re la t ive ly  weak s t ruc tura l   coupl ing  
between the  panels it must  be  concluded t h a t  aerodynamic  coupling i s  t h e   p r i -  
m.ary cause of the  observed  destabilization  which  accompanies  the  increase  in 
t he  number of streamwise bays. 

Another   in te res t ing   fea ture  i s  i l l u s t r a t e d  by Table I. For the  case 
o f   a spec t   r a t io  4 t he   s ing le   pane l   f l u t t e r s   i n   t he   s econd  mode whereas t h e  
arrays  with two  and t h r e e   b a y s   f l u t t e r   i n   t h e  f i rs t  mode.  The t ransfer   o f  
f l u t t e r  mode cor re la tes   wi th   the   p ronounced   increase   in   th ickness   requi red   to  
p reven t   f l u t t e r .  However, i n  the  case  of   panels   with  aspect   ra t io  2, t he  
thickness  required  does  no  increase so drast ical ly .   This   can  probably  be 
par t ly   accounted  for  by t h e   f a c t   t h a t ,   i n  one sense, t h e   f l u t t e r  mode does  not 
change as the  number of bays i s  increased. For instance,   Table I shows that 
the  one, two and   th ree   bay   a r rays   f lu t te r  i n  the  second,  third  and  fourth 
modes, respect ively.  However, i n  each  case  the  deflection  shape  in  any one 
panel i s  a complete  sine wave. Therefore,  from  the  individual  panel  point  of 
view there  i s  no t r a n s f e r   o f   f l u t t e r  mode as the  number of  bays  increases. 

The preceding  observations on t h e   e f f e c t s  of   increasing  the number 
of sh-earrwise bays  agree  qual i ta t ively  with  previous  analyses   of  two-dimen- 
s iona l   pane l   a r rays  (Refs. 2-6).   Quantitative  comparison  can  be  mde  with 
Zeydel 's   analysis [4] o r  aluminum panels a t  sea l e v e l  which  omits  the  effects 
of s t ructural   coupl ing  and damping. A t  Mach number 1.35 Zeydel  found  the 
thickness  required t o  p reven t   f l u t t e r  of two and   th ree   bay   a r rays   to   increase  
by fac tors   o f  1.56 and 1.68, respect ively,   over   the  thickness   required  for  a 
single  panel.   These  ratios  are  smaller  than  the  corresponding  values  of 1.92 
and  2 .21  obtained  in   the  present   analysis   for   panels   of   aspect   ra t io   4 .  How- 
ever,  a t  t h i s   p a r t i c u l a r  Mach number, Zeydel ' s   resul ts  show that f l u t t e r  
o c c u r s   i n   t h e   f i r s t  mode f o r  a l l  cases.  Moving t o  Mach number 1 . 4  where the  
f l u t t e r  mode t r a n s f e r s  from.  two t o  one, as observed in   t he   p re sen t   ana lys i s ,  
t h e  t h i ckness   r a t io s  are 1.98 and  2.31.  These lat ter r a t i o s   a r e   i n   c l o s e  
agreement  with  present  results.  The above  comparison  implies  that  the  results 
obtained  here  for  Wch number 1.35 must not be genera l ized   to   o ther   mch 
numbers i n   t h e  low supersonic  regime. 

* The  odd  numbered  modes f o r   t h e  two bay  arrays  and modes 1, 4, 7 , 10, e t c .  
f o r  the  three  bay  arrays.   These modes ar,e character ized by vanishing 
bending moments a t  the  p a n e l  boundaries. 
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C. Effect  of  Aspect  Ratio 

The preceding  discussion  deals   pr imari ly  with t h e   e f f e c t  of t he  
number of streamwise  bays on t h e   f l u t t e r  of f i n i t e  f l a t  panel   arrays composed 
of one spanwise  bay  and  one, two and  three  streanwise  bays. It i s  now des i r -  
ab le   to   cons ider   the   in f luence  of a spec t   r a t io .  The most apparent  influence 
i s  the   s tab i l iza t ion   ob ta ined  by decreas ing   the   aspec t   ra t io .  T h i s  e f f e c t  is 
i l l u s t r a t e d   i n  Figs. 3 through 8 by the   overa l l   cont rac t ion   of   the   uns tab le  
regions which  accompanies  reduction  of  the  aspect  ratio from 4 t o  2. The 
f igu res  also show t h a t   t h e   s t a b i l i z i n g   e f f e c t  becomes more pronounced a s   t h e  
number of streamwise  bays  increases-  Quantitative  evaluation  of  the above 
influence  can be  obtained  from  Table I f o r  alundnurn panels a t  sea   l eve l .  For 
the   s ing le   pane ls   the   th ickness   to   p revent   f lu t te r   reduces  by 19  pe r   cen t   i n  
going  from  aspect  ratio 4 t o  2. The corresponding  thickness  reductions for 
the  two and th ree  bay a r r ays   a r e  39 per  cent  and 44 per cent, respect ively.  
It i s  a l so   i n t e re s t ing   t o   obse rve   t ha t   t he   t h i ckness   t o   p reven t   f l u t t e r  of  a 
th ree  bay array  of  panels of a s p e c t   r a t i o  2 i s  only 1.23 times  the  thickness 
required for a s ingle   pane l  of a s p e c t   r a t i o  4. These resu l t s   sugges t   tha t  
reduct ion  of   aspect   ra t io  may be preferab le   to   increas ing   pane l   th ickness   as  
a meags for preven t ing   t he   f l u t t e r  of multi-bay  arrays. 

A second  effect  of aspect   ra t io   (not   convenient ly  shown i n   t h e  
f igu res )  i s  an  increase  in   coupl ing between modes with  decreasing  aspect 
r a t i o .  T h i s  implies   increased  s t ructural   coupl ing between  streamwise  panels. 
The l a t t e r   p robab ly   con t r ibu te s   t o   i nc reased   s t ab i l i t y ,   because   F igs .  3 
through 8 show tha t   the   s t ruc tura l ly   coupled  modes a r e   l e s s   e a s i l y   e x c i t e d .  
It a l s o  means t h a t  as aspec t   ra t io   decreases  it becomes  more important t o  
inc lude   the   e f fec t  of s t ruc tura l   coupl ing  i n  a f l u t t e r   a n a l y s i s .  

D.  E f fec t   o f   F in i t e  Span 

The present   ana ly t ica l   t echnique  i s  s i m i l a r   t o   t h a t  of [5,8] w i t h  
the  except ion  that   f ini te   span  arrays  are   invest igated  here   whereas   in  [5,8] 
the  span is  assumed t o   e x t e n d   t o   i n f i n i t y   i n   d i s c r e t e ,   u n i f o r m  bays.  Although 
only  limited  comparison  can  be made between the  two techniques  because of t h e  
p r e s e n t   r e s t r i c t i o n   t o  one Mach number, it appea r s   t ha t   t he   f i n i t e  span 
approach  yields   s l ight ly   less   conservat ive  resul ts ,   i .e . ,  computed thickness 
t o   p r e v e n t   f l u t t e r  i s  s l i g h t l y  smaller. The e f f ec t   a l so   appea r s   t o  be sorne- 
what g rea t e r   fo r   t he   sma l l e r   a spec t   r a t io   pane l s .  For e x a w l e ,   c r i t i c a l  
thicknesses for single   panels  a t  sea   l eve l  are shown below as obtained  with 
the  two techniques. 
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Thickness t o   P r e v e n t   F l u t t e r  
Aspect  Ratio  Reference 8 Present  Analysis 

2 
4 

0.00790 
0.00928 

0.00758 
0.00925 

Although the  above r e s u l t s  show l i t t l e  va r i a t ion  it would be o f   i n t e r e s t   t o  
compare t h e  two t echn iques   i n   app l i ca t ion   t o   mu l t ip l e  streamwise bay a r r ays  
of  srt laller  aspect  ratio.  

V. CONCLUSIONS 

On the   bas i s  of r e s u l t s   o b t a i n e d   i n   t h e   p r e s e n t   f l u t t e r   a n a l y s i s  of 
simply  supported,  multiple strearwise bay f l a t   p a n e l   a r r a y s   f o r  Mach number 
1.35 and   s t ruc tu ra l  damping coe f f i c i en t  equal t o  0.01 it i s  concluded t h a t :  

(1) The addi t ion  of  streamwise panels  i s  des tab i l iz ing .  

(2)  The d e s t a b i l i z i n g   e f f e c t  i s  propor t iona te ly   g rea te r  when the  
number of streanwise bays i s  increased  from one t o  two, than when a t h i r d  
panel  i s  added t o  a two bay array.  

(3) The des t ab i l i z ing   e f f ec t  i s  greater   for   panels   of   large  aspect  
r a t i o .  

(4) The prirnary mechanism of des t ab i l i za t ion  i s  aerodynamic 
coupling  between  the  streamwise  panels. 

(5) Decreasing  panel  aspect  ratio  has a s t a b i l i z i n g   e f f e c t  which 
increases   with number of  streamwise  panels. 

(6)  The qua l i t a t ive   f ea tu re s   o f   t he   r e su l t s   ob ta ined   i n   t h i s  
analysis  can be ex t rapola ted   to   o ther  Mach numbers i n   t h e  low supersonic 
regime. However, the   quant i ta t ive   e f fec t   o f   increas ing   the  number of  stream- 
wise bays i s  Mach number dependent,  and  cannot  be  obtained by extrapolat ion.  



REFERENCES 

1. Kobett, D. R.,  Research  on  Panel  Flutter, NASA CR-80, 1964. 

3. Dowell, E., The F lu t t e r   o f  Multi-Bay Panels a t  High Supersonic  Speeds, 
AFOSR 5327, Mass. I n s t .  Tech.,  August, 1963. 

4. Zeijdel ,  E. F. E. ,  Large  Deflection  Panel  Flutter,  AFOSR Tech.  Note 1952, 
1962. 

5. Zeydel, E. F.  E.,and  Kobett, D.  R . ,  F lu t t e r   o f   F l a t   P l a t e s   w i th   Pa r t i a l ly  
Clamped Edges i n  the  Low Supersonic  Region, A I M  Journal,  Vol. 3, No. 1, 
1965. 

6 .  Lock, M. H. and Farkas, E. F., The F l u t t e r  of Two-Bay Flat   Panels  of 
I n f i n i t e  Span a t  Supersonic Mach Numbers, Aerospace  Corporation  Report 
SSD-TDR-64-164,  1964. 

7. Luke, Y. L.,and S t .  John, A . ,  Supersonic  Panel  Flutter, WADC Tech.  Report 
57-252,  1957- 

8. Kobett, D. R., and  Zeydel, E. F. E.,  Research  on  Panel  Flutter, NASA TN D- 
222 7, 1963. 





APPENDIX 

TABUS I AND I1 AND FIGURES 1 THROUGH 10 





TABiX I 

Aspect Number 
Ratio of B y s  

4 1 
2 1 
4 2 
2  2 
4  3 
2  3 

1 
S j  0 j  

0.18037 2.9309 
1.0 0 
0.08102 3.0772 
0.00436 -0.2846 

- - 
- 

M I N I "  THICKNESS TO PREVENT  FLUTTER 
OF A L U "  PANELS AT SEA LEVEL 

1 
0 j  

0.10596 2.8718 
1.0 0 
0.04753 3.0701 
0.00182 -0.3906 

- - 
- - 

Reduced Minim Thickness Dominant Mode 
Frequency t o  Prevent  Flutter i n   F l u t t e r  Vector 

1.215 
I. 0385 
0.595 
I. 505 
0.715 
1.555 

0.00925 
. 00 758 
.01783 
.01074 
.02040 
.01143 

TAWLATION OF FLUTTER VECTOR 

Aspect  Ratio - 2 
Number of Streamwise Bays 

2  3 
S j  0 j  S j  03 

0.01937 -0.5421 0.01766 2.7602 
0.08126 -0.4662 0.02007 2.6405 
1.0 0 0.08409 -0.4930 
0.09730 3.1156 1.0 0 
0.005 75 -0.7410 0.15014 3.0535 
0.01754 -0.3126 0.00979 -1.1932 

Aspect  Ratio - 4 
Number of Streamwise Bays 

2  3 

S j  8j S j  0 j  

1.0 0 1.0 0 
0.04929 0.1589 0.06885 0.2431 
0.00133 4.7564 0.00097 -3.7153 
0.00901 2.9923 0.00360 -3.3447 
0.00018 4.6434 0.00124 -0.6262 - - 0.00429 -3.4258 
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Fig. 1 - Typical Panel Array 



First Mode Second Mode Third Mode Fourth Mode 

Mode Shapes for  One  Bay Fanel  Array 

R p+ 
-1 - 

0 1 2 

Fourth Mode 

Second Mode Third Mode 

0 1 2 0 1 2 
Streamwise  Coordinate - x 

Fif th  Mode Sixth Mode 

Mode Shapes for Two Bay Fanel Army 

Fig. 2a - Mode Shapes for  Fanel Arrays  with One and Two Streamwise Bays 
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Fig. 2b - Mode Shapes for  Fane1 Arrays wi th  Three  Streamwise Beys 
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Fig. 3 - Stab i l i t y  Bound.=ries for a Single  Panel of Aspect Ratio 4, Mach 
Number = 1.35 and Structural Damping Coefficient g = 0.01 
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Fig. 4 - S t a b i l i t y  Boundaries f o r  a Single   Panel  of Aspect  Ratio 2, Mach 
Number = 1.35 and   S t ruc tura l  Damping Coeff ic ient  g = 0.01 
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Fig. 5 - Stabili ty  Boundaries for  an  Array  of Two Streamwise  Fanels of Aspect  Ratio 4, Mach 
Number = 1.35 and Structural Damping Coefficient [: = 0.01 
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Fig. 6 - Stab i l i t y  Boundaries for an Array of Two StreatmJise Fanels of Aspect 
Ratio 2, Mach Number = 1.35 and Structural  Damping Coefficient 

g = 0.01 
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Fig. 7 - Stabi l i ty  Boundaries fo r  an Array of  Three Streamwise Panels of Aspect  Ratio 4, Mach 
Number = 1.35 and Structural  Damping Coefficient g = 0.01 
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Fig. 8 - S t a b i l i t y  Boundaries f o r  an Array of Three  Streamwise  Panels  of Aspect Ratio 2, Mach 
Number = 1.35 and Structural   Bmping  Coefficient g = 0.01 



Fig, 9 - Critical   Flutter Boundaries for  Panel Arrays with  Multiple Streamwise Bays - 
Panels of Aspect Ratio 4, Mach Number = 1.35 and Structural Damping 

Coefficient g = 0.01 
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Fig. 10 - C r i t i c a l   F l u t t e r  Boundaries for  Panel  Arrays with Nultiple  Streamvise 
Bays - Fanels of Aspect Ratio 2, Ylch Number = 1.35 and 
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